Generalized Bhaskar Rao Designs with Block Size 3 over Finite Abelian Groups
نویسندگان
چکیده
We show that if G is a finite Abelian group and the block size is 3, then the necessary conditions for the existence of a (v, 3, λ;G) GBRD are sufficient. These necessary conditions include the usual necessary conditions for the existence of the associated (v, 3, λ) BIBD plus λ ≡ 0 (mod |G|), plus some extra conditions when |G| is even, namely that the number of blocks be divisible by 4 and, if v = 3 and the Sylow 2-subgroup of G is cyclic, then also λ ≡ 0 (mod 2|G|).
منابع مشابه
Bhaskar Rao designs and the groups of order 12
We complete the solution of the existence problem for generalized Bhaskar Rao designs of block size 3 over groups of order 12. In particular we prove that if G is a group of order 12 which is cyclic or dicyclic, then a generalized Bhaskar Rao design, GBRD(v, 3, λ = 12t;G) exists for all v ≥ 3 when t is even and for all v ≥ 4 when t is odd.
متن کاملGeneralized Bhaskar Rao designs with block size three
We show that the necessary conditions λ = 0 (mod IGI), λ(v-l)=0 (mod2), λv(v 1) = [0 (mod 6) for IGI odd, (0 (mod 24) for IGI even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(v,b,r,3,λ;G) for the elementary abelian group G, of each order IGI. Disciplines Physical Sciences and Mathematics Publication Details Seberry, J, Generalized Bhaskar Rao designs with block si...
متن کاملBhaskar Rao ternary designs and applications
Generalized Bhaskar Rao n-ary are defined. This paper studies with elements from abelian groups of Generalized Bhaskar Rao nary called Bhaskar Rao Bhaskar Rao a v b matrix of ±1 and such that the inner product of any two rows 0 and the matrix obtained of X by its absolute value the incidence matrix of the construction of infinite families of Balanced Balanced are Some construction methods and n...
متن کاملGeneralised Bhaskar Rao designs with elements from cyclic groups of even order
A necessary condition is given for the existence of some Generalised Bhaskar Rao designs (GBRDs) with odd block size over cyclic groups of even order. Some constructions are given for GBRDs over cyclic groups of even order with block size 3 and with block size 4. AMS Subject Classification: 05B99 J( ey words and phrases: Balanced Incomplete Block Designs; Generalised Bhaskar Rao Designs
متن کاملGeneralized Bhaskar Rao designs with two association classes
In previous work generalized Bhaskar Rao designs whose underlying design is a b~lanced incomplete block design have been considered. In the first section of this paper generalized Bhaskar Rao designs (with 2 association classes) whose underlying design is a group divisible design are defin~d. Some methods for the construction of these designs are developed in the second section. It is shown tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 23 شماره
صفحات -
تاریخ انتشار 2007